DM 8 NOMBRES RÉELS ET SUITES

À rendre lundi 5 janvier

Exercice Développements asymptotiques

I Un exemple de développement asymptotique à l'ordre 4

Soit $u = (u_n)_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n!} \sum_{k=1}^n k! = \frac{1! + 2! + \dots + n!}{n!}$$

On cherche à montrer qu'il existe des nombres réels a,b,c,d,e tels qu'au voisinage de $+\infty$ on ait :

$$u_n = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \frac{e}{n^4} + \underset{n \to +\infty}{o} \left(\frac{1}{n^4}\right)$$

On dit alors que u admet un développement asymptotique à l'ordre 4.

1. Montrer:

$$\forall n \in \mathbb{N}^*, \quad u_n \le 2$$

- 2. Montrer que u converge vers 1.
- 3. Soit $v = (v_n)_{n \ge 6}$ définie pour tout entier $n \ge 6$ par :

$$v_n = \frac{1}{n!} \sum_{k=1}^{n-5} k! = \frac{1! + 2! + \dots + (n-5)!}{n!}$$

- (a) Montrer qu'au voisinage de $+\infty$, $v_n = \underset{n \to +\infty}{o} \left(\frac{1}{n^4}\right)$.
- (b) Déterminer le développement asymptotique à l'ordre 4 des suites $(x_n)_n$ suivantes.
 - i. Pour *n* entier tel que $n \ge 2$, on pose : $x_n = \frac{1}{n(n-1)}$
 - A. Déterminer une suite $(a_n)_{n\geq 2}$ d'expression simple telle que $x_n \underset{n\to+\infty}{\sim} a_n$.
 - B. Déterminer une suite $(b_n)_{n\geq 2}$ d'expression simple telle que $x_n-a_n \underset{n\to +\infty}{\sim} b_n$.
 - C. Déterminer une suite $(c_n)_{n\geq 2}$ d'expression simple telle que $x_n-a_n-b_n \underset{n\to +\infty}{\sim} c_n$.
 - D. Déterminer une suite simple, équivalente à $(c_n)_{n\geq 2}$.

E. En déduire que $(x_n)_{n\geq 2}$ admet le développement asymptotique à l'ordre 4 suivant :

$$x_n = \frac{1}{n^2} + \frac{1}{n^3} + \frac{1}{n^4} + \underset{n \to +\infty}{o} \left(\frac{1}{n^4}\right)$$

- ii. En appliquant la méthode décrite pour la suite $(x_n)_{n\geq 2}$ de la question précédente, déterminer le développement asymptotique à l'ordre 4 de la suite $\left(\frac{1}{n(n-1)(n-2)}\right)_{n\geq 3}$.
- iii. De la même façon, déterminer le développement asymptotique à l'ordre 4 de la suite $\left(\frac{1}{n(n-1)(n-2)(n-3)}\right)_{n>4}$
- (c) Montrer que u admet un développement asymptotique sous la forme souhaitée, et déterminer les réels a, b, c, d, e.

II Un exemple de développement asymptotique à l'ordre 1

Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\forall n \in \mathbb{N}, \quad I_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n}$$

1. Montrer:

$$\forall y \in \mathbb{R}_+, \quad \ln(1+y) \le y$$

2. Pour n entier, encadrer $1-I_n$ et en déduire que

$$\lim_{n\to\infty}I_n=1$$

- 3. Pour n entier, intégrer $1 I_n$ par parties.
- 4. En utilisant la question 1., en déduire que la suite $(I_n)_{n\in\mathbb{N}}$ admet pour développement asymptotique à l'ordre 1 :

$$I_n = 1 - \frac{\ln 2}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n}\right)$$

Problème

Partie I

Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites telles que :

$$\forall n \in \mathbb{N}, \quad a_n > 0 \quad \text{et} \quad b_n > 0$$

On pose, pour tout $n \in \mathbb{N}$: $A_n = \sum_{k=0}^n a_k$ et $B_n = \sum_{k=0}^n b_k$.

1. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à termes dans \mathbb{R}_+^* . Montrer que $u_n \underset{n\to+\infty}{\sim} v_n$ si et seulement si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Rightarrow |v_n - u_n| \le \varepsilon u_n)$$

- 2. Montrer que soit $(A_n)_{n\in\mathbb{N}}$ est convergente de limite l>0, soit divergente vers $+\infty$.
- 3. On suppose que $a_n \underset{n \to +\infty}{\sim} b_n$. Montrer grâce à la question 1, que si $(A_n)_n$ diverge vers $+\infty$, alors $A_n \underset{n \to +\infty}{\sim} B_n$.

On a ainsi montré que : Si $a_n \underset{n \to +\infty}{\sim} b_n$ et si $\lim_{n \to +\infty} A_n = +\infty$, alors $A_n \underset{n \to +\infty}{\sim} B_n$

4. Appliquer le résultat à la suite de terme général $(\ln(n+1)-\ln(n))_{n\in\mathbb{N}^*}$, en déduire un équivalent simple de la suite $\left(\sum_{k=1}^n \frac{1}{k}\right)_{n\in\mathbb{N}^*}$.

Partie II

Soit x un réel fixé. On note $u=(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=x$ et par :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n e^{-u_n}$$

- 1. Montrer que si x > 0, la suite u est à termes dans \mathbb{R}_+^* .
- 2. Montrer que si x > 0, la suite u est strictement décroissante.
- 3. Montrer que si u converge vers un réel l, alors l=0.
- 4. Montrer que la suite u converge si et seulement si $x \ge 0$.

On suppose désormais que x > 0

- 5. Démontrer que la suite $\left(\frac{1}{u_{n+1}} \frac{1}{u_n}\right)_{n \in \mathbb{N}}$ converge vers 1.
- 6. En déduire, grâce au résultat de la partie I, que : $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

On admet le résultat suivant : si $(x_n)_{n\in\mathbb{N}}$ est une suite qui converge vers 0, alors on a : $e^{x_n}=1+x_n+\frac{x_n^2}{2}+\mathop{o}\limits_{n\to+\infty}\left(x_n^2\right)$

7. Montrer que:

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} - 1 \underset{n \to +\infty}{\sim} \frac{u_n}{2}$$

8. (a) Montrer que $x \in \mathbb{R}^*$, on a :

$$e^x > x + 1$$

(b) Grâce au résultat de la partie I, en déduire :

$$\frac{1}{u_n} = n + \frac{\ln(n)}{2} + \underset{n \to +\infty}{o} (\ln(n))$$

9. En déduire:

$$u_n - \frac{1}{n} \underset{n \to +\infty}{\sim} - \frac{\ln(n)}{2n^2}$$

3